![[Fig1-eps-converted-to.pdf]]
Figure [[Fig1-eps-converted-to.pdf|1]] is of a general variable mass system (GVMS). It comprises a consumable rigid base $B$ and a fluid phase $F$. A massless shell $C$ of constant volume $V_0$ and constant surface area $S_0$ is rigidly attached to $B$. It is assumed that mass can enter or exit $C$ through the region represented as a dashed circle of radius $R$. At every instant, the shell and everything within it is considered to be the system of interest.
## Kinematics
First, note from the figure that:
$
\mathbf{r} = \mathbf{r^*} + \mathbf{p}
$
Inertial velocity of $P$
$
{^N\mathbf{v}^P}= {^N\mathbf{v}^O}
+ (^N\boldsymbol{\omega}^B \times \mathbf{r})
+ {^B\mathbf{v}^P}
$
and inertial velocity of $S^*$
$
{^N\mathbf{v}^*}= {^N\mathbf{v}^O}
+ (^N\boldsymbol{\omega}^B \times \mathbf{r^*})
+ {^B\mathbf{v}^*}
$
So, we can rewrite the inertial velocity of $P$ relative to $S^*$ as
$
{^N\mathbf{v}^P}= {^N\mathbf{v}^*}
+ (^N\boldsymbol{\omega}^B \times \mathbf{p})
+ ( {^B\mathbf{v}^P} - {^B\mathbf{v}^*})
$
## Next notes
[[2a1 Lagrangian of GVMS]]
[[2a2 VMS Equations of Attitude Motion about mass centre]]