## Discrete Lagrangian
![[Fig1-eps-converted-to.pdf]]
It is key to note that the exact exact discrete Lagrangian, $\mathcal{L}_{d}^{E}$, is different from the discrete Lagrangian, $\mathcal{L}_{d}$. This note builds on that concept.
The exact discrete Lagrangian, $\mathcal{L}_{d}^{E}$, relates to the Lagrangian in the following way
$
\begin{aligned}
\mathcal{L}_{d}^{E} = \int _{{t_{k}}} ^{t_{k+1}} \mathcal{L} \, dt
\end{aligned}
$
The Lagrangian of the above variable mass system is given by
$
\mathcal{L} = \int _{m} {^N\mathbf{v}^P} \cdot {^N\mathbf{v}^P} \, dm
$
which can be treated by transferring velocity computation to point $O$ on the rigid body; this is detailed in Nanjangud and Eke:
$
\begin{aligned}
\mathcal{L} &&= \int _{m}
\bigg(
{^N\mathbf{v}^O}
+ ({^N\boldsymbol{\omega}^B \times \mathbf{r})
+ ( {^B\mathbf{v}^P} - {^B\mathbf{v}^*})}
\bigg)\\
\cdot
&&\bigg(
{^N\mathbf{v}^O}
+ ({^N\boldsymbol{\omega}^B \times \mathbf{r})
+ ( {^B\mathbf{v}^P} - {^B\mathbf{v}^*})}
\bigg)
\, dm\\
\end{aligned}
$